SIDDAGANGA INSTITUTE OF TECHNOLOGY, TUMAKURU

LECTURE PLAN FOR THE ODD SEMESTER OF THE ACADEMIC YEAR 2025 – 2026

Faculty	Mr. Keerthan Kumar T G	Dept.	Information Science and Engineering
Class	5 th Semester (ISE) -F	Course	Artificial Intelligence and Machine Learning (S5ISI01)

Cou	Course Learning Objectives (CLOs): This course will make to student to:		
1	Understand fundamental concepts in Artificial Intelligence.		
2	Explore basic principles of AI such as problem solving, searching, knowledge representation and learning.		
3	Explain the role of agents in AI and structure of the agents.		
4	Analyze and identify significant characteristics of data sets.		
5	Understand and implement the training, testing, and validation phases of supervised and unsupervised learning algorithms.		

				Teac	hing & L	earning S	Scheme	!	
Course Code	Course Title	Classroom Instruction (CI)	(in hrs / sem)	Lab Instruction (LI) (in hrs / sem)	Self-Learning (SL) (in hrs / sem)	Term Work (TW) (in hrs / sem)	Assessment (hrs / sem)	Total no. of Hours per sem	Total Credits (C)* (Total Hours/30)
		L	T	P	SL	TW	A		
S5ISI01	Artificial Intelligence and Machine Learning	42	-	28	14	29	7	120	3

Sl. No.	Date	Торіс	Remarks
		UNIT 1	
1.	1/9/2025	INTRODUCTION: What is AI?	
2.	1/9/2025	Acting humanly: The Turing Test approach, Thinking humanly: The cognitive modelling approach,	
3.	2/9/2025	Thinking rationally: The "laws of thought" approach, Acting rationally: The rational agent approach,	
4.	3/9/2025	Revision of Previous Class Syllabus	SH

5.	8/9/2025	INTELLIGENT AGENTS: Agents and Environments,	
3.		Rationality, Omniscience, learning, and autonomy,	
6.	8/9/2025	the nature of Environments: Specifying the task environment,	
0.		Properties of task environments,	
	9/9/2025	The Structure of Agents; Agent programs, Simple reflex agents,	
7.		Model-based reflex agents, Goal-based agents, Utility-based agents,	
		Learning agents	
8.	15/9/2025	Revision of Previous Class Syllabus	
9.	15/9/2025	SOLVING PROBLEMS BY SEARCHING: Problem-solving	
		agents;	
	10/9/2025	Well-defined problems and solutions, Formulating problems,	
	16/9/2025	Example problems; Toy problems, Real-world problems,	
12.	17/9/2025	Revision of Previous Class Syllabus	
		UNIT II	
13.	29/9/2025	SOLVING PROBLEMS BY SEARCHING (CONTD.)	
13.		Searching for solution; Infrastructure for search algorithms,	
14.	29/9/2025	Measuring problem-solving performance,	
15.	30/9/2025	Uninformed search strategies, Uniform-cost search, Depth-limited	
13.		search,	
16.	1/10/2025	Revision of Previous Class Syllabus	
17.	6/10/2025	ADVERSIAL SEARCH: Games	
18.	6/10/2025	Optimal Decisions in Games;	
19.	8/10/2025	The minimax algorithm,	
20.	20/10/2025	Revision of Previous Class Syllabus	
21	21/10/2025	CONSTRAINT SATISFACTION PROBLEMS: Defining	
21.	21/10/2023	Constraint satisfaction	
22.	27/10/2025	Problems; Example problem: Map coloring.	
23.	27/10/2025	Example problem: Job-shop scheduling,	
24.	28/10/2025	Revision of Previous Class Syllabus	
		UNIT III	
25.	29/10/2025	INTRODUCTION: If Data had Mass, The Earth Would Be A	
23.	29/10/2023	Black Hole, Learning; Machine Learning,	
26.	3/11/2025	Types of Machine Learning, Supervised Learning; Regression,	
20.	3/11/2023	Classification The Machine Learning Process	
27.	3/11/2025	Revision of Previous Class Syllabus	
28.	4/11/2025	PRELIMINARIES: Some Terminology; Weight Space	
29.	5/11/2025	The Curse of Dimensionality, Knowing What You Know;	
30.	10/11/2025	Overfitting, Training, Testing, and Validation Sets,	
31.	10/11/2025	Revision of Previous Class Syllabus	
32.	11/11/2025	The Confusion Matrix, Accuracy Metrics, The Receiver Operator	
34.	11/11/2023	Characteristic (ROC) Curve,	

33.	12/11/2025	Unbalanced Datasets, Measurement Precision,: Testing Machine				
33.	12/11/2028	Learning Algorithms,				
34.	17/11/2025	Turning Data into Probabilities; Some Basic Statistics,				
35.	35. 17/11/2025 Revision of Previous Class Syllabus					
	UNIT IV					
36.	18/11/2025	DIMENSIONALITY REDUCTION : Linear Discriminant Analysis (LDA),				
37.	19/11/2025	Principal Components Analysis (PCA),				
38.	24/11/2025	Relation with the Multi-layer Perceptron,				
39.	24/11/2025	Revision of Previous Class Syllabus				
40.	25/11/2025	Kernel PCA, Methods Comparisons,				
41.	26/11/2025	LEARNING WITH TREES: Using Decision Trees,				
42.	1/12/2025	Constructing Decision Trees				
43.	1/12/2025	Revision of Previous Class Syllabus				
44.	2/12/2025	Classification and Regression Trees (CART);				
45.	3/12/2025	Gini Impurity, Regression in Trees, Classification Examples and Problems.				
46.	8/12/2025	Revision of Previous Class Syllabus				
		UNIT V				
47.	8/12/2025	PROBABILISTIC LEARNING: Nearest Neighbour Methods				
48.	8/12/2025	k- Nearest Neighbour Algorithm and problem solving				
49.	9/12/2025	UNSUPERVISED LEARNING; CLUSTERING: Introduction,				
50.	10/12/2025	Hierarchical Clustering, and problem solving				
51.	10/12/2025	Revision of Previous Class Syllabus				
52.	11/12/2025	Agglomerative Clustering and problem solving				
53.	11/12/2025	The single Linkage Algorithm, The complete linkage Algorithm,				
54.	12/12/2025	The Average Linkage Algorithm, Partitional Clustering, Forgy's Algorithm,				
55.	12/12/2025	The k-means Algorithm, Vector Quantization, The <i>K</i> -Means Algorithm,				
56.	13/12/2025	Revision of Previous Class Syllabus				

Important Dates to be remembered:

Sl. No.	Important Events	Date
1.	I – Test	13 th -15 th Oct. 2025
2.	Last date for dropping of course	21 th Oct. 2025
3.	ARAS for ISE students Phase I	22 th -24 th Sep. 2025
4.	ARAS for ISE students –Phase II	13 th -15 th Nov. 2025
5.	II – Test	27 th -29 th Nov. 2025
6.	Last date for withdrawal of course	1 th Dec. 2025
7.	Last working day	13 th Dec. 2025
8.	Preparation Holidays	14 th -19 th Dec. 2025

9.	Semester end examination	20 st -05 nd Dec-Jan. 2026
10.	Announcement of results	17 th Jan. 2026

Activities to meet Teaching Learning Scheme:

Sl.	Activity Planned	Number
No.		of Hours
1.	Class Room Teaching	42
2.	Lab Related Activities	28
3.	Formative Assessment [Test (2 No.) +Quiz (2 No.) + Semester End Exam]	07
4.	Student Study Hours—Self Learning	14
5.	Activity Based Learning:	20+9 =
	I. Solving Real time Projects using AI and ML (20 Hours)	29
	1. Identifying areas in which students want to carry out the project by literature survey - 3 Hours.	
	2. Meeting and discussing (online or offline) with the faculty and fixing the problem statement- 2 Hours.	
	3. Designing and implementing the project - 14 Hours	
	4. Presentation and submitting the final report - 1 Hour.	
	II. Solving Assignment Problems based on different ML algorithms (9	
	Hours)	
	1. Submission of the final assignment report.	
	Total:	120

Text Books:

1.	Stuart J. Russell and Peter Norvig, Artificial Intelligence, A Modern Approach, 3 rd Edition,
	Pearson India Education Services, 2015 (UNIT I and II).
2.	Stephen Marsland, Machine Learning, An Algorithmic Perspective, 2 nd Edition, CRC Press,

Reference Books:

1.	Elaine Rich, Kevin Knight, Artificial Intelligence, 3 rd Edition, Tata McGraw Hill, 2009.
2.	Christopher Bishop, Pattern Recognition and Machine Learning, CBS Publishers &
	Distributors- New Delhi. 2006
3.	Tom M Mitchell, Machine Learning, McGraw-Hill, Inc. New York, NY, USA. 2013

Course Outcomes: Upon completion of this course, the student will be able to:

CO1	Identify knowledge representation techniques and problem-solving strategies to
COI	common Artificial Intelligence (AI) applications. (L1)
CO2	Discuss the structure of the agents and different types of agents commonly used in AI.
CO2	(L2)
CO3	Differentiate between machine learning algorithms based on learning criteria and
COS	parameter employed. (L2)
CO4	Apply and illustrate the significances of dimensionality reduction techniques for
CO4	supervised and unsupervised problem solving. (L3)
CO5	Design applications to solve real world problems by applying machine learning
	algorithms such as classification, regression, and clustering. (L3)

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes (PSOs)

Course	POs									PSOs					
outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	2	2	-	-	-	-	-	-	-	-	2	-	-
CO5	2		3										3		
CO (Average)	2	2	3	2	-	-	-	-	-	-	-	-	2	-	-

Degree of compliance 1: Low 2: Medium 3: High

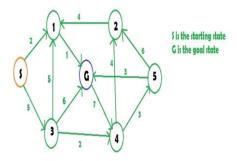
Course delivery methods, assessment tools and sample questions:

CO1	Understand and Explore knowledge representation techniques and problem-solving strategies to common Artificial Intelligence (AI) applications.					
Delivery	Blackboard Teaching, Group Activity					
Methods						
Assessment	Tests and SEE					
Tools	Tests and SEE					
	1. What are the various applications of AI? (L1)					
Sample	2. What are agents? (L1)					
Questions	3. What is an intelligent agent? (L1)					
	4. Describe the goal-based agent with an example. (L2)					

CO2	Discuss the structure of the agents and different types of agents commonly used in AI.					
Delivery Methods	Blackboard Teaching, Group Activity, Power point Presentation					
Assessment Tools	Tests and SEE					
	1. Discuss how an algorithm's performance is evaluated? (L2)					
Sample	2. Explain informed Search Strategies. (L2)					
Questions	3. Illustrate Map-Coloring Problem. (L2)					
	4. Discuss the variations in CSP formalism. (L2)					

CO3	Differentiate between machine learning algorithms based on learning criteria and parameter employed.				
Delivery Methods	Blackboard Teaching, Power Point Presentation, Think-Pair-Share,				
Assessment Tools	Tests and SEE, Assignment				
Sample Questions	 Discuss different types of Machine learning algorithms? (L3) Illustrate Bias/Variance Dilemma with Example. (L2) Give any two suitable examples for supervised algorithms. (L1) Illustrate the curse of dimensionality concept. (L3) Describe the various metrics used for measuring performances of machine learning algorithms. (L2) 				

CO4	Apply and illustrate the significances of dimensionality reduction techniques for supervised and unsupervised problem solving.						
Delivery Methods	Blackboard Teaching, Think-pair-share,						
Assessment Tools	Tests and SEE, Assignment						
Sample Questions	 Mention the examples of nonlinear dimensionality reduction. (L1) What is Principal Component Analysis? (L1) Discuss the factors involved in choosing suitable smoothing model for an application. (L2) Illustrate the Regression trees with suitable examples. (L2) Explain PCA methodology. (L2) 						


CO5	Design applications to solve real world problems by applying machine learning algorithms such as classification, regression, and clustering.				
Delivery Methods	Blackboard Teaching, Power-point presentation				
Assessment Tools	Tests and SEE, Assignment				
Sample Questions	 Explain the geometry of Linear discriminant classes. (L1) Explain the various types of clustering techniques. (L2) Discuss the K-means clustering algorithm. (L3) Illustrate the regression concept with suitable examples. (L2) Differentiate between supervised and unsupervised classification algorithms. (L2) 				

Sl.	Lab Programs /Topics Covered
No.	
1.	Write two Python programs to calculate the factorial of a given number n using following
	approaches:
	a) Iterative function
	b) Recursive function
2.	Write a Python function that checks whether a given integer is a prime number or not.
3.	Write a function that takes two lists as input, merges them, and returns a new list with
	unique elements only, maintaining the original order of first occurrence.
4.	Write a Python Program to perform the following searching functions:
	a. Linear Search
	b. Binary Search
5.	Write three separate Python functions to perform the following operations on 2D matrices:
	a) Addition
	b) Subtraction
	c) Transpose

- Write a Python functions using **Pandas** to implement the following operations:
 - a) Create a DataFrame from a dictionary containing student names and their marks.
 - b) Add a new column for grades (e.g., A/B/C based on marks).
 - c) Filter out students with marks below 50.
 - d) Sort the DataFrame by marks in descending order.
- Write a python program to implement the following Uninformed search algorithms:
 - a) Breadth First Search algorithm
 - b) Depth First Search Algorithm
- You are given a road network where each road segment between two locations has an associated cost (e.g., time taken, distance travelled, or fuel consumption). You need to implement the Uniform Cost Search (UCS) algorithm to find the least-cost path from a starting location to a destination.

The road network is represented as a graph where:

- Nodes represent intersections or locations.
- Edges represent the road segments connecting those locations, and each edge has a cost associated with it (e.g., travel time or distance).

Write a python program to implement the Tic-Tac-Toe game and demonstrate the steps. Consider 3X3 board and minimum of two players.

- Write a python program to implement Map coloring problem using either Constraint Satisfaction problem method or by applying Graph coloring algorithm. Also apply the same algorithm to the following Map and validate the answers.
 - a) Australian Map with three colors

Demonstrate the implementation of the supervised probability based naïve Bayesian classifier and demonstrate the performance of the model with clear interpretation of confusion matrices and other performance metrics. Use IRIS dataset for demonstration of the Model performance.

12	Implement a Simple supervised Linear Regression model using the training data set. Assume the appropriate dependent and independent variables for regression analysis. Predict the scores on the test data. Print the MSE and R Squared Score (Coefficient of determination). Interpret the results. Consider Diabetes dataset downloaded from sklearn repository.
13	Implement a supervised Logistic Regression model using the training data set. Assume the appropriate dependent and independent variables for regression analysis. Predict the scores on the test data. The output should include Confusion Matrix, Accuracy, Error rate, Interpret the results. Consider an USER-DATA dataset downloaded from Kaggle repository.
14	Demonstrate the implementation of Linear discriminant analysis (LDA) technique for dimensionality reduction. Consider IRIS dataset from Kaggle repository.
15	Demonstrate the implementation of Principal component analysis (PCA) technique for dimensionality reduction. Consider IRIS dataset from Kaggle repository.
17	A telecommunications company is looking to predict customer churn (whether a customer will leave the service or not). Currently, the company has a huge dataset containing customer details, including their usage patterns, subscription plans, and support tickets. The company is struggling to identify the key factors contributing to churn, and therefore, struggles to take proactive measures to retain customers. Use the ID3 (Iterative Dichotomiser 3) decision tree algorithm to predict whether a customer will churn or stay, based on features such as: • Customer Age • Subscription Plan • Monthly Spend • Number of Support Tickets • Customer Satisfaction Score Demonstrate the performance of the model. Interpret the significance of Entropy and Information gain on model performance. Plot the complete tree constructed. A large shapping mall wants to better understand its customer base to improve business.
17	A large shopping mall wants to better understand its customer base to improve business performance across its stores. Currently, all customers are treated the same regardless of their spending habits or demographics, leading to missed opportunities for personalized services and promotions. Use k-Means clustering to segment mall customers based on demographic and behavioural attributes such as age, annual income, and spending score. Also provide the distinct customer groups and provide insights for the Personalized marketing.
18	A weather forecasting company wants to enhance its predictive capabilities by categorizing weather conditions based on historical weather data. Currently, the company only provides general weather forecasts, but there is an opportunity to improve their predictions by identifying patterns in weather data that correspond to specific conditions (such as sunny, rainy, or cloudy). By classifying weather conditions, the company can provide more precise and targeted weather forecasts for different locations and times of day. Use the k-Nearest Neighbors (k-NN) algorithm to classify weather conditions based on historical weather data. The goal is to predict weather conditions (such as Sunny, Rainy, Cloudy) for a given day, based on input features such as temperature, humidity, wind speed, and precipitation.

Keute

1/9/25

HOD 01/09/2025

Principal 202